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Abstract—Large language models (LLMs) have exploded in
popularity due to their new generative capabilities that go far
beyond prior state-of-the-art. These technologies are increasingly
being leveraged in various domains such as law, finance, and
medicine. However, these models carry significant computational
challenges, especially the compute and energy costs required for
inference. Inference energy costs already receive less attention
than the energy costs of training LLMs—despite how often these
large models are called on to conduct inference in reality (e.g.,
ChatGPT). As these state-of-the-art LLMs see increasing usage
and deployment in various domains, a better understanding
of their resource utilization is crucial for cost-savings, scaling
performance, efficient hardware usage, and optimal inference
strategies.

In this paper, we describe experiments conducted to study the
computational and energy utilization of inference with LLMs. We
benchmark and conduct a preliminary analysis of the inference
performance and inference energy costs of different sizes of
LLaMA—a recent state-of-the-art LLM—developed by Meta AI
on two generations of popular GPUs (NVIDIA V100 & A100)
and two datasets (Alpaca and GSM8K) to reflect the diverse
set of tasks/benchmarks for LLMs in research and practice.
We present the results of multi-node, multi-GPU inference using
model sharding across up to 32 GPUs. To our knowledge, our
work is the one of the first to study LLM inference performance
from the perspective of computational and energy resources at
this scale.

Index Terms—Large Language Models, Natural Language
Processing, Inference, Green AI, LLM, NLP, Deep Learning,
Distributed Computing, Energy, Sustainability

I. INTRODUCTION

Generative models (GenAI) are able to produce new content

from synthesizing text, images, and audio from which it’s

trained on. While GenAI is not entirely new, the recent

application and broad availability of this technology via tools

such as Stable Diffusion [1], OpenAI’s ChatGPT, Google’s

Bard and integration into the Microsoft Bing search engine

has captured the imagination of the world and led to a massive

surge in interest in deploying these types of models across a
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variety of domains ranging such as education, government,

engineering, law, finance and many more.

The popularity of these models has also put a spotlight on

many societal concerns stemming from their usage. From ethi-

cal concerns ranging from violations of copyright laws [2], [3]

to safety concerns arising from the fact that these models are

capable of hallucinating or fabricating information, concerns

about these models in the educational and medical domain [4],

[5], their carbon footprint, and many more.

In this paper, we focus primarily on understanding the

significant amount of resources—time, computation, and

energy—required for using and deploying some of the large

language models (LLM) like those that underlie ChatGPT,

Bard, etc. Several prior works have estimated the compute

and energy costs of training language models. Works like [6]

discuss the carbon footprint of language models such as BERT,

ELMo, and precursors to larger models such as GPT-3 and

GPT-4 that power some of the popular AI chatbots today. Oth-

ers have also looked to larger language models; for instance,

the largest NVIDIA Megatron-LM model required 3,072 A100

GPUs [7]–[9] for its training. While the complete details (time

and resources used) of compute required for training GPT-

3/4 are not available, several estimates for training [10], [11]

and inference are publicly available. As industry attempts to

shore up competitive moats and restrict information regarding

their underlying LLM technologies, these details can become

less reliable and available. Compounding this issue, estimates

for inference are even less readily available [12] despite their

significant share of energy costs and their likely larger impact

on the environment [13]—especially since model inference

calls can occur more frequently than training/fine-tuning for

real-world deployments and applications.

We present the results of our inference experiments on

LLaMA [14]: an open sourced pre-trained large language

models by Meta AI. The LLaMA model is available in a

number of sizes but, in most cases, its larger variants typically

require multiple high-end GPUs for both training and in-

ference (assuming no further compression/distillation). While

our emphasis is on characterizing the compute performance

and energy used for multi-node, multi-GPU inference, we

also include results from single node instances using smaller

variants of the model as a baseline comparison. We hope our

work will help illustrate some of the compute performance

and energy utilization characteristics of LLM inference. We

also hope that our experiments, analysis, and data on real-
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world hardware will spur further analysis, benchmarking,

and more open dissemination of the systematic performance

characteristics for a wider range of large models—especially

under different kinds of hardware, data, and optimization

strategies.

II. OVERVIEW OF LARGE LANGUAGE MODELS

The landscape of large language models (LLMs) and large

foundation models (LFMs) has seen explosive growth in both

the speed of development as well as complexity of ever larger

models. Over the past several years, competition has been

fierce and the pace un-relenting as AI research groups across

private companies and academic institutions have developed

new models whose performance continues to improve on a

wide suite of natural language benchmarks but still requires

significant amounts of compute and energy. We provide a brief

overview of LLMs and LFMs below along with details around

the specific LLM we use for our analysis.

Fig. 1: Development paths of LLMs: A tree diagram illustrat-

ing the development of language models and foundation mod-

els from 2017 to early 2023. Pink branches indicate encoder-

type language models, green indicates encoder-decoder hybrid

models, and the dark grey indicates decoder-style models. The

bar-plot on the bottom right tallies the number of open/closed

source models developed by different companies/institutions.

We study LLaMA (outlined by the red arrow and red circle in

the diagram above) as an example of one of the more recent,

modern, and state-of-the-art LLMs whose size/complexity

resemble Google’s Bard and OpenAI’s GPT-4, all three of

which were released around the same time (spring 2023).

Original figure from [15].

A. Large Language Models & Large Foundation Models

As seen in Fig. 1, many different LLMs and foundation

models exist—each with their own respective training setup,

architectural modifications, purposes or use-cases, etc. Large

language models and foundation models are best known for

their sheer size, resource intensity (i.e., the amount of com-

putational resources required for training/inference), and their

impressive capabilities in tasks that include, but may not be

limited to, natural language.

Typically, LLMs refer to language models containing on

the order of hundreds of millions to billions of parameters

that are trained on extremely large datasets of text. These

models are also typically based on some variant of the original

transformer architecture [16] usually leveraging the decoder

half or a hybrid encoder-decoder architecture. Large language

models can be considered a subset of large foundation models;

whereas LLMs focus almost exclusively on language data

for their inputs and outputs, large foundation models include

models that allow for multiple modalities such as image and

text (e.g., GPT-4) or other modalities such as image generation

(e.g., Stable Diffusion) or video generation (e.g., MidJourney).

We refer to [17] for a comprehensive review of the broad

classes of GenAI and their capabilities.

B. LLaMA

Developed by Meta AI and released in February of 2023,

LLaMA [14] (Large Language Model Meta AI) is a large lan-

guage model (LLM) that relies on the traditional transformer

architecture originally introduced in [16]. Most notably, the

performance of LLaMA rivaled or exceeded that of GPT-3 on

many NLP benchmarks and remains competitive with other

state-of-the-art LLMs [14]. Like other LLMs, LLaMA was

pre-trained on a large collection of data including but not

limited to CommonCrawl, Github, Wikipedia, etc. As of spring

2023, alongside other recently timed releases of state-of-the-art

LLMs such as Google’s Bard and OpenAI’s GPT-4, LLaMA is

competitive in its state-of-the-art performance across multiple

tasks, making it an ideal workhorse for realistically studying

and benchmarking inference.

LLaMA comes in four sizes characterized by the number of

parameters: 7 billion (LLaMA 7B), 13 billion (LLaMA 13B),

33 billion (LLaMA 33B) and 65 (LLaMA 65B). LLaMA’s

model weights, across all of its variants, were publicly released

under a non-commercial license, making it one of only a select

few modern, state-of-the-art LLMs that have been publicly

available.

To best understand the realities that lie behind the energy

costs and throughput of state-of-the-art LLM inference, we fo-

cus our analysis on the largest available version of LLaMA—

namely, LLaMA 65B. We also conduct analysis comparing

the 7B and 13B LLaMA variants to establish the baseline

performance of the smaller variants of the LLaMA model.

The largest model we focus our analysis on, LLaMA 65B, is

a 65 billion parameter model with an effective model dimen-

sion of 8,192 and a total of 80 layers and 64 attention heads,

trained over 1.4 trillion tokens. By focusing on the largest 65B

version, we also hope to study inference at its fullest scale,

controlling for and benchmarking phenomena that we may not

observe on LLMs of smaller size or complexity. This way, we

can realistically benchmark and study the dynamics, as well

as the implications, of inference energy costs and through-put

on a scale consistent with state-of-the-art LLMs that we see

and use today.



III. EXPERIMENTAL SETUP

We conducted our experiments on the MIT Supercloud

high-performance computing (HPC) system [18]. This het-

erogeneous HPC cluster consists of 448 compute nodes with

dual Intel Xeon Gold 6248 CPUs with 384 GB of RAM

and two NVIDIA Volta V100 GPUs with 32 GB of memory

per node. Each node on the system has two independent

back-end fabrics: a 100 Gb/s Intel Omnipath as well as a

25 Gb/s Ethernet interconnect using Mellanox ConnectX-4

adapters with all servers connected to a single, non-blocking

Arista DCS-7516 Ethernet core switch. The GPUs, Omnipath,

and Ethernet cards are all connected to PCIe slots that route

directly to the Xeon processors without any intermediary PCIe

switches. All experiments in this paper exclusively used the

25 Gb/s Ethernet interconnect. The system also includes 480

CPU-only nodes with Intel Xeon Platinum 8260 processors.

In addition, four nodes with NVIDIA A100 GPUs were also

available for experiments described in this paper. A summary

of the hardware is shown in Table I. All experiments described

in this paper were run exclusively on NVIDIA GPUs.

TABLE I: Compute node configurations: This table lists

the types of hardware used for inference evaluations in our

experiments. Each node consists of 2 CPUs and 2 GPUs in

the configuration listed below. All GPUs are from NVIDIA.

CPU GPU

Type Memory TDP Type Memory TDP
(GB) (W) (GB) (W)

Intel Xeon
Gold 6248 384 150 V100 32 250

Intel Xeon
Platinum 8358 503 240 A100 80 300

A. Models

Experiments were performed using open-source implemen-

tation of the pre-trained LLaMA 65B model available via

request from Meta [14] and evaluation scripts available via

GitHub [19]. This implementation of the model uses Pytorch

and the FairScale [20] library to enable model sharding across

multiple GPUs and nodes. For the models, we use a decoder

temperature setting τ = 0.8 and a top-p value of 0.95 in

attempts to align our settings with the general range of values

that are typically used. In future work, we aim to study

how varying decoding temperature, top-p, and other hyper-

parameters may affect compute performance and energy usage

during inference. While our main focus is on LLaMA 65B,

we also examine LLaMA 7B and LLaMA 13B to characterize

inference performance and energy under the bare minimum

settings/resources required to run these models.

B. Datasets

We used two datasets to evaluate inference performance.

The first is an instruction following dataset used to fine-tune

the Alpaca [21] model (from here on, this dataset is referred

to as “Alpaca” in our paper which is not to be confused with

the Alpaca model). This Alpaca dataset consists of 52,000

instruction-following tasks, instructions/questions where some

have example inputs and some do not, that the model is asked

to answer. The second dataset is GSM8K [22], consisting of

8,500 human crafted grade school math problems. The goal

of using these two datasets is two-fold: (1) to evaluate the

model on a diverse set of tasks in NLP and (2) evaluate

how different types of data and its underlying dynamics

can impact energy and inference performance. While natural

language is more common in LLM usage and in LLM training

data, increasingly new capabilities have been demonstrated

in LLMs, including the ability to solve simple mathematical

problems, provide/correct examples of code, and more. Math

questions also differ considerably from questions posed in

natural language which can result in smaller context windows,

inputs/outputs of differing lengths, number of decoded tokens,

etc. This, in turn, may impact inference performance in

either throughput rates or energy costs. For this reason, our

benchmarking experiments are conducted on both datasets.

For both datasets, we sample 4,096 inputs for our inference

experiments. Using the entirety of the datasets would only

serve to increase inference time and energy used for the ex-

perimentation unreasonably and did not provide any significant

benefits to the study.

C. Evaluation

Our goal is to evaluate the inference performance, latency,

and inference energy costs of LLaMA 65B as a representative

large language model that requires sharding across multiple

GPUs. We intend this to be a preliminary analysis that will

help guide more in-depth experiments and benchmarking for

our future work. Our analysis also includes limited analysis of

smaller LLaMA variants to illustrate inference performance

and energy trade-offs in bare-minimum hardware settings:

namely, LLaMA 7B and 13B. While we do not control for

the correctness/quality of the outputs or the complexity of the

inputs/outputs in studying trade-offs between inference energy

and performance, we hope to account for this as an ablative

study in future work. Similarly, we do not perform a com-

prehensive evaluation with different optimization techniques

or inference settings available for LLMs such as modeling

query arrival rates, model quantization, continuous batching,

etc. which we also leave for future work.

Inference performance is measured in terms of rates: words,

tokens, and responses per second or, equivalently, the number

of words, tokens, and responses generated per second. When

running inference with LLaMA, the model generates a string

of text for each input until the length of the text hits a

maximum generation length or a stop-word is encountered.

The number of words are calculated by counting the number

of words present in the output by splitting each output string

on spaces. The number of tokens is calculated using LLaMA’s

own default tokenizer by counting the number of tokens in the

tokenized output. Lastly, the number of responses per second

or the response rate is calculated using the total number of



responses and the total time needed to run inference over the

input data.

We monitor GPUs using the nvidia-smi [23] and

NVIDIA DCGM [24] utilities to study GPU utilization, energy,

power draw, etc. during our experiments. The nvidia-smi

utility is used to capture GPU usage over time at 100ms

intervals and the DCGM monitoring tool is used to capture

aggregate GPU energy in Joules for the rank-0 node. For a

multi-node, multi-GPU model, we multiply the rank-0 energy

by the number of nodes used. Maximum power draw on GPUs

is capped at 250 Watts unless otherwise stated. Due to limits

on resource availability, we mainly use V100 GPUs for larger-

scale distributed experiments (i.e., for 8, 16, and 32 shards)

and A100 GPUs for smaller scale experiments.

Inference energy metrics are calculated by combining the

inference metrics above with the energy data collected from

our GPUs using NVIDIA’s utilities described above. Specif-

ically, energy per second is defined as the total aggregate

GPU energy spent from a single experiment/job (across all

shards) divided by the total run time of that experiment/job in

seconds. A single experiment/job denotes a single run through

all 4,096 prompts under a specified batch size. Energy per

token and energy per response are similarly defined as total

energy divided by the number of decoded output tokens and

the number of responses as defined above, respectively.

IV. RESULTS

A. Baselines: LLaMA 7B, 13B, & 65B

1) Inference Performance: We begin our analysis with

a baseline comparison of LLaMA 65B with smaller-scale

LLaMA models: LLaMA 7B and 13B. The goal is to under-

stand the following: what do inference performance and energy

trade-offs look like for the different sizes of LLaMA under the

bare-minimum set of resources required to have them running

inference? This question can be important for researchers

and users who have may not have limitless computational

resources and hardware acceleration or may be constrained

in terms of GPU memory, etc.

Given the sizes of the models, the size of the data, and the

hardware memory limits, we only show results from experi-

ments that were possible for a given combination of parameters

(i.e., for some models, certain combinations of batch size and

number of shards are infeasible due to memory limits of the

underlying GPUs). Table II shows the bare minimum hardware

requirements for each LLaMA variant and the maximum batch

size possible for each combination, assuming no further model

compression, optimization, quantization, distillation etc.

With these limits in mind, we present the inference per-

formance of LLaMA 7B, 13B, and 65B on the Alpaca and

GSM8K datasets with the bare minimum hardware settings in

Figure 2. The plots in Figure 2 show a baseline comparison of

inference performance of the three LLaMA variants on both

the V100 and A100 GPUs respectively. For each model, in

line with the spirit of the bare minimum settings, inference

is done with a batch size of 64 and an maximum generation

length of 256. The 7B model was run on a single GPU and

TABLE II: Baseline configurations for LLaMA 7B, 13B,

and 65B: This table lists the bare minimum hardware required

for different models and the maximum batch size possible

given the bare minimum hardware for a max response length

of 256. These limits are imposed by a combination of GPU

memory, model size, response length and the number of GPUs.

While the 65B model can sharded across 6 V100 GPUs, we

use 8 since the model architecture makes it better suited for

balanced sharding across 8 GPUs.

Model Size V100 32GB A100 80GB

Count Max. Batch size Count Max. Batch size

7B 1 64 1 64
13B 2 64 1 64
65B 8 64 4 128

13B on two GPUs in each case whereas the 65B model was

run on 8 V100 GPUs and 4 A100 GPUs respectively due to

the size of the model and available memory on the GPU(s).

As expected, we observe that the A100 outperforms V100

on both the Alpaca and GSM8K datasets: particularly for the

smaller LLaMA 7B and 13B, we see anywhere from a 2

times (7B) to a 1.25 times increase (13B) in inference latency

on the A100 when compared to the V100 across words per

second, tokens per second, and responses per second. Faster

response rates and inference are likely due to the fact that

the number of computations, directly related to the number

of parameters of said model, involved in the 7B and 13B

models are significantly lower than the 65B model. We do note

that for LLaMA 65B, we see a much smaller improvement in

using the A100 over the V100; however, since the 65B model

requires sharding across two (A100) or four (V100) compute

nodes at the mininum, this could result in additional latency

to each forward pass of the model, explaining the smaller

improvements. We also observe that while LLaMA 7B exhibits

a considerable improvement in inference throughput on both

Alpaca and GSM8K with the A100, the improvement is much

larger for Alpaca than GSM8K. This can also be attributed to

the different complexities of inputs from each dataset.

2) Inference Energy: Figure 3 shows a comparison of the

energy per second required to run inference on LLaMA 7B,

13B, and 65B, with different GPUs under the same bare mini-

mum hardware settings as the above. For both the Alpaca and

GSM8K datasets, we see that there is a considerable increase

in the energy per second across all LLaMA sizes when using

the A100 over the V100 where the most considerable increase

is for the smallest 7B model. Although Figure 2 shows a

considerable increase in inference throughput from using the

A100, Figure 3 shows us that this improvement does not come

for free: it comes at an increased energy cost per second.

Moreover, for the largest LLaMA 65B, it is less clear whether

the increased inference energy per second (Figure 3) is worth

the small improvement in inference throughput in terms of

words/token/responses per second (Figure 2).



(a) Results from the Alpaca dataset.

(b) Results from GSM8K dataset

Fig. 2: Baseline comparison of inference perfor-

mance/latency between LLaMA 7B, 13B and 65B: inference

performance comparisons on the minimum set of hardware

required to run inference (see Table II) across model sizes

and between V100s and A100s.

Fig. 3: Baseline energy per second (Watts) estimates of per-

forming inference with LLaMA 7B, 13B, and 65B: inference

energy comparisons on the minimum set of hardware/settings

required (see Table II) with Alpaca and GSM8K on a log-scale.

Color indicates device (V100/A100), bars indicate average

quantities and lines indicate error bars. Energy is averaged

over maximum generation lengths of 256, 512, and 1024 due

to near-identical energy/size trends for each generation length.

Fig. 4: Energy per second (Watts) estimates of LLaMA 65B

across batch sizes of 64/128/256/256 and 8/16/32 shards for

max generation length 512: inference energy estimates on

Alpaca and GSM8K on log-scale. Color indicates batch size.

B. Energy per Second: LLaMA 65B

We first take a look at the amount of energy inference costs

per unit time in seconds. Figures 4 and 5 show a more in-

depth look of the energy inference costs of LLaMA 65B across

different batch sizes and degrees of sharding. Specifically,

Figure 4 shows energy costs for maximum generation length

512 and Figure 5 shows energy costs for 1024.

Overall, we see an average increase in energy per second

with the number of shards. While there is a slight correlation

as energy per second increases with increasing batch size,

increasing the number of shards always increases the wattage.

Indeed, the energy per second increases with the number of

shards even at the same batch size (e.g., the energy of inference

at batch size 64, going from 16 shards to 32 shards). For both

datasets, increasing the max generation length from 512 to

1024 does seem to increase the energy per second for each

batch size within each shard configuration, but the overall

effect is less clear or consistent. Overall, we see that the energy

per second for inference with LLaMA 65B is on the order of

300 Watts to 1 Kilowatt from the lower shard configuration of

8 GPUs to the higher end of 32 GPUs.

C. Energy per Decoded Token: LLaMA 65B

Moving on to energy per each decoded output token, we see

that in Figures 6 and 7 that energy per token tends to follow

a similar pattern in relation to the number of shards: as the

number of shards increases, the energy per output token also



Fig. 5: Energy per second (Watts) estimates of LLaMA 65B

across batch sizes of 64/128/256/512 and 8/16/32 shards for

max generation length 1024: inference energy estimates on

Alpaca and GSM8K on log-scale. Color indicates batch size.

increases. However, we see little change in the average energy

per token between max generation length 512 and 1024. For

instance, with length 512, we see that it takes about 3-4 Joules

for a output token, which is approximately the same amount

for length 512. As with energy per second, max generation

length seems to have a negligible effect on energy costs from

512 to 1024. Interestingly, there appears to be an exception for

the GSM8K math problem dataset; there exists a “sweet spot”

at 16 shards where continuously increasing the batch size can

actually reduce the energy per token at max generation length

512. However, this disappears under max generation length

1024 where increasing the batch size increases the energy per

token. The definitive existence of this sweet spot for datasets

of differing styles/complexities, or others like it, will require

more experimentation and benchmarking to establish.

D. Energy per Response: LLaMA 65B

Figures 8 and 9 show energy metrics in terms of responses

from the 65B model. Like before, we see that increasing

the number of shards still tends to increase the energy costs

of inference per response most overall while increasing the

maximum generation length from 512 (Figure 8) to 1024

(Figure 9) does not induce a clear or significant effect in

inference energy costs. Also like before, while we see slight

increases in energy costs per response generated within a

shard configuration as batch size increases, but not consistently

or significantly. Again, we see that for GSM8K, at max

Fig. 6: Energy per output token estimates of LLaMA 65B

across batch sizes of 64/128/256/512 and 8/16/32 shards

for max generation length 512: inference energy estimates

on Alpaca and GSM8K on log-scale. Color indicates batch

size.

Fig. 7: Energy per output token estimates of LLaMA 65B

across batch sizes of 64/128/256/512 and 8/16/32 shards for

max generation length 1024: inference energy estimates on

Alpaca and GSM8K on log-scale. Color indicates batch size.



Fig. 8: Energy per response estimates of LLaMA 65B

across batch sizes of 64/128/256/512 and 8/16/32 shards

for max generation length 512: inference energy estimates

on Alpaca and GSM8K on log-scale. Color indicates batch

size.

generation length 512, increasing the batch size while keeping

the number of shards fixed at 16 is associated with a decrease

in energy per response, which is consistent with what we

observed in energy per tokens in the same setting.

E. Effects of GPU Power Capping on LLaMA 65B

Power consumption in AI is an increasingly important

concern. In prior work, we have shown [25] that power capping

GPUs during training of language models such as BERT [26]

is an effective way of reducing the energy consumed training

these models. While the work in [25] focused on model

training, in this paper, we focus on inference. In order to study

the effect of power capping on inference using large language

models, we ran a limited set of experiments using LLaMA

65B. We ran the 65B model on four 80GB A100 GPUs with

the power cap set at 250W, 175W and 150W.

Table III shows the relative change in total inference time,

energy and token rate under power cap conditions. Results

shown here are calculated relative to a power cap of 250W. For

a 30% reduction in power from 250W to 175W, the inference

time increases by an average of 6.7% for a corresponding aver-

age reduction in total energy by 23.21%. However, a reduction

in power cap to 150W results in a much more significant

(19.49%) increase in average inference time. These results

show that power capping as an energy savings intervention

can be effective when applied appropriately. A static power

Fig. 9: Energy per response estimates of LLaMA 65B

across batch sizes of 64/128/256/512 and 8/16/32 shards

for max generation length 512: inference energy estimates

on Alpaca and GSM8K on log-scale. Color indicates batch

size.

cap for all GPU workloads may not show the same effective-

ness depending on the task and additional experimentation is

required to make broader recommendations.

Output Time Energy Token Rate
length % change % change % change

175W 150W 175W 150W 175W 150W

256 6.23 15.33 -21.82 -32.76 -5.87 -13.15
512 6.51 21.70 -23.95 -34.66 -6.11 -17.83
1024 7.40 21.65 -23.87 -34.59 -6.89 -17.80

TABLE III: Effects of GPU power capping on LLaMA 65B

inference: This table shows the relative performance of the

LLaMA 65B model on the GSM8k dataset with a batch size of

64 and output lengths of 256, 512, 1024 using NVIDIA A100

GPUs. The GPUs were power capped at 250W, 175W and

150W. Results shown here are relative to model performance

at 250W to stay consistent with the settings in the rest of the

experiments described here.

F. GPU Resource Utilization under Distributed Inference

Finally, we briefly examine the average GPU resource

utilization by the 65B LLaMA model when running model

sharded inference. For the sake of simplicity, we only consider

a batch size of 64 and a maximum generated output length



of 256. For this configuration, we ran on four A100 GPUs

and 8, 16, 32 V100 GPUs. These results are summarized in

Tables IV and V. In all cases, the streaming multiprocessors

(SM) utilization as reported by the DCGM utility was observed

to be in the 94%-95% range. For the A100 GPUs, the average

SM utilization rises to 98% when the maximum generated

output length is increased to 2048. Given that the model is

sharded in a manner that enables us to load it fully in GPU

memory and run inference on a non-trivial amount of data,

we expect memory utilization to be low depending on the

specific model parameters and input sizes used. Thus, on

the four 80GB A100 nodes, the memory utilization varies

between 23%-27% depending the maximum generated output

length. This under-utilization of memory implies that it may

be possible to co-locate multiple models on the same set

of GPUs to increase aggregate throughput and potentially

reduce cloud compute costs or improve system utilization at

a supercomputer center. With new GPU sharing capabilities

such as Multi-Process Service (MPS) [27] and Multi-Instance

GPU (MIG) [28], a single GPU may be shared by diverse

workloads for an overall improvement in system throughput

as shown in recent work [29]. The optimal GPU configuration

for sharing LLMs and other workloads is a part of our future

work in this area.

Model Shards Output Length Max. Memory Util. Avg. SM Util.

4 256 23.36 95.00
4 512 24.54 98.81
4 1024 24.85 98.85
4 2048 27.00 98.00

TABLE IV: A100 Utilization: This table shows GPU utiliza-

tion for 80GB A100 GPUs and LLaMA 65B with 4 shards,

batch size of 64 averaged across both datasets used in this

paper.

Model Shards Output Length Max. Memory Util. Avg. SM Util.

8 256 24.25 94.75
16 256 13.33 95.00
32 256 6.66 95.66

TABLE V: V100 Utilization: This table shows GPU utiliza-

tion for 32GB V100 GPUs and LLaMA 65B with 8, 16, 32

shards, a batch size of 64 and maximum generated output

length of 256 averaged across both datasets used in this paper.

We limit this result to an ouptut length of 256 because longer

outputs on 8 V100 GPUs are not possible given memory limits

of the GPU.

V. DISCUSSION

In this paper, we show the results of benchmarking a

representative large language model on NVIDIA GPUs. We

show baseline results from smaller models (7B, 13B) and

compare them against the largest available version (65B) of

LLaMA. We also examine the inference performance and en-

ergy across distributed settings and different configurations by

varying model parameters, input data, and hardware configu-

rations. By comparing a natural language instruction following

dataset (Alpaca) and a mathematical question-answer dataset

(GSM8K), we also find that the complexity of the input dataset

can affect the model performance for a given set of hyper-

parameters and hardware configuration.

Given the size of LLMs and the limits imposed by current

hardware, inference with large models can impose onerous

requirements. For example, we find that, at a minimum, 8

V100 GPUs each with 32 GB of RAM or 4 A100 GPUs

each with 80GB of memory are required for any meaningful

inferences with the 65B LLaMA model. In each case among

our experiments, we shard the model evenly across all GPUs in

order to fit the model/data; however, this results in only 20%-

25% of the GPU memory being utilized at any given time. This

over-provisioning of resources represents new opportunities

for resource sharing across multiple workloads in the latest

NVIDIA GPUs. The Multi-Process Service (MPS) [27] and

Multi-Instance GPU (MIG) [28] are new capabilities that

enable GPU sharing across different workloads. Although

identifying the optimal MPS or MIG configuration for a

given set of workloads is challenging, recent work [29] has

developed new techniques to exploit these capabilities in order

to dynamically partition GPU resources. This opens up the

potential to optimally partition high-end GPUs such as the

A100s or H100s to co-locate multiple LLMs for inference—

with the potential of only minimal degradation to computa-

tional performance.

Finally, as AI compute requirements have increased, there

is an increasing focus on approaches to reduce the carbon

and energy footprints of datacenters by making larger models

leaner or more efficient. Approaches such as model quan-

tization, distillation, sparsification, etc. are being developed

to reduce the compute required for AI along with the de-

velopment of custom, energy-efficient hardware for inference

and training. However, simple interventions like GPU power

capping is available to be deployed today—our preliminary

analysis with LLM inference in this paper suggests that power

capping can be an effective tool for reducing inference energy.

If applied at the datacenter-scale, this intervention has the

potential to reduce overall energy usage in the long-run as new

approaches are developed to address the energy consumption

of AI compute.

As part of our future plans, we aim to conduct similar

experiments on other open-source, large language models

along with more in-depth characterization of compute and

energy for not just inference, but also for the training/fine-

tuning of these models. It is our hope that this paper provides

a baseline for inference with LLMs and fosters a broader

discussion of the challenges and opportunities in this field.
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